基于优势距离指数的变精度直觉模糊粗糙集模型及应用 本期目录 >>
Title: Variable precision intuitionistic fuzzy rough set model and application based on dominance distance index
作者 刘勇;Jeffrey.Forrest;赵焕焕
Author(s): Liu Yong; Jeffrey.Forrest; Zhao Huan-huan
摘要: 在现实的多属性决策信息系统中,总是包含大量的偏好信息、模糊信息、噪声数据,而基于传统的粗糙集模型难以有效处理此类决策问题,鉴于此,本文构建了一种新的变精度直觉模糊粗糙集模型。该方法,首先针对直觉模糊信息系统中直觉模糊数比较存在的问题,定义了直觉模糊优势距离指数,利用其确定对象的优劣关系,进而以优势距离指数构建了变精度直觉模糊粗糙集模型;而后研究了模型的性质,最后以信息系统安全审计风险识别验证所提出模型的有效性与合理性。结果表明,通过调整直觉模糊优势距离指数的阀值和置信参数的阀值模型具有一定容错能力,且模型能够有效地处理含有偏好信息的直觉模糊信息系统,有效地提取决策规则。
Abstract: Facing today’s fiercely competitive market, businesses or individuals often encounter complex decision making concerning uncertainty, and need to analyze and deal with various uncertainties such as randomness, fuzziness, preferences, roughness and make immediately decisions. However, only a theory or method based on soft computing technology handles difficultly many uncertain making decision problems, and then some soft computing technologies such as rough set theory, fuzzy set theory and their complementary advantages can be used to flexibly deal with uncertainties in real life. Being a new mathematic tool to deal with various incomplete information that is inaccurate, inconsistent and incomplete etc, rough set possesses its advantages, disadvantages and the scope of application and has difficulties in dealing with some uncertain making decision problems. Therefore according to the variety of uncertainties in the practical application of knowledge representation systems, the advantages of the rough set theory with those of other soft technology theories can be integrated to construct a more powerful hybrid method of soft decision making and broaden the scope of the rough set theory application and provide a wide range of scientific and standard methods for decision making about uncertainties. With respect to the multi-attribute decision making problems that there exist always a lot of preference information, fuzzy information, and noise data in the real decision making information system, the thought and method of intuitionistic fuzzy set, variable precision rough set model and dominance relationship is used to construct a novel variable precision intuitionistic fuzzy rough set model, and the example of risk identification on the safety audit of the information system is exploited to illustrate the validity and rationality of the proposed model. In the first part, with respect to the exiting shortcoming of the comparison of the intuitionistic fuzzy number in the intuitionistic fuzzy information system, the intuitionistic fuzzy dominance distance index is defined to determine the dominance relationship between objects and the comparison of intuitionistic fuzzy numbers is made. In the second part, based on the dominance relationship, variable precision intuitionistic fuzzy rough set model is established, and the natures of the hybrid model is studied; finally, an example illustrates the effectiveness and applicability of the model. The result shows that the hybrid model has a certain tolerant ability by adjusting the threshold parameters of the intuitionistic fuzzy dominance distance index and confidence, and then it can well deal with the intuitionistic fuzzy information system with preference information and effectively extract decision making rules. In summary, The proposed model can be used to deal with the multi-attribute decision making problems that there exist always a lot of preference information, fuzzy information, and noise data in the real decision making information system, so that it can help improve the quality and efficiency of decision-making and achieve the goals of decision-making.
关键词: 偏好信息;直觉模糊数;优势距离指数;直觉模糊粗糙集
Keywords: preference information; intuitionistic fuzzy number; dominance distance index;; intuitionistic fuzzy rough set model
基金项目: 江苏省高校哲学社科重点项目;国家自然科学基金项目;江苏省自然科学基金项目;江苏省社会科学基金项目;中央高校基本科研业务费专项基金
发表期数: 2017年 第3期
中图分类号: 文献标识码: 文章编号:
参考文献/References:

[1] Z. Pawlak. Rough set[J]. Int J of Computer and Information Science, 1982, 11(5): 341-356.

[2] Z. Pawlak, A. Skowron. Rudiments of rough sets[J]. Information Sciences, 2007, 1:3-27.

[3] Z. Pawlak, A. Skowron.. Rough sets: some extensions[J]. Information Sciences, 2007, 1:28-40.

[4] Z. Pawlak, A. Skowron. Rough sets and Boolean reasoning [J]. Information Sciences, 2007, 1:41-73.

[5] D. Dubois, H. Prade. The Oriental Aspect of Reasoning about Data[M]. London: Academic Publishers, 1999.

[6] K. Atanassove. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20: 87-96.

[7] K. Atanassove. More on intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989, 33:37-46.

[8] M.D. Cock. Fuzzy rough sets are intuitionistic L-fuzzy sets[J]. Fuzzy Sets and Systems, 1998, 96(3): 381-383.

[9] C. Cornelis, M.D. Cock, E.E. Kerre. Intuitionistic fuzzy rough sets: At the crossroads of imperfect knowledge[J]. Expert Systems, 2003, 20(5): 260-270.

[10] C. Cornelis, G. Deschrijver, E.E. Kerre. Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: Construction, classification, application[J]. Int J of Approximate Reasoning, 2004, 35(1): 55-95.

[11] T.H. She, X.L. He, G.L. Wang. Rough truth degrees of formulas and approximate reasoning in rough logic[J]. Fundamenta Informaticae, 2011, 107(10): 67-83.

[12] VILÉM N. Reasoning about mathematical fuzzy logic and its future[J]. Fuzzy Sets and Systems, 2012, 192(2): 25-44.

[13] FERNANDO B, UMBERTO S. Generalized fuzzy rough description logics[J]. Information Sciences, 2012, 189(2):43-62.

[14] 申立平, 王艳平. 直觉模糊粗糙逻辑的语义及其推理[J]. 智能系统学报, 2014, 9(1):1-6. (L.P. Shen, Y.P. Wang. Semantic of intuitionistic fuzzy rough logic and its reasoning[J]. CAAI Transactions on Intelligent Systems, 2014,9(1):1-6.)

[15] P. Jena, S.K. Ghosh. intuitionistic fuzzy rough sets[J]. Noteson Intuitionistic Fuzzy Sets, 2002(8):l-18.

[16] 徐小来, 雷英杰, 谭巧英. 基于直觉模糊三角模的直觉模糊粗糙集[J]. 控制与决策, 2008, 23(8): 900-904.(X.L. Xu, Y.J. Lei, Q.Y. Tan. Intuitionistic fuzzy rough sets based on triangle norm[J]. Control and Decision, 2008,23(8): 900-904.)

[17] L. Zhou, W.Z. Wu. On generalized intuitionistic fuzzy approximation operators[J]. Information Sciences, 2008,178(11): 2448-2465.

[18] L. Zhou, W.Z. Wu, W.X. Zhang. On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators[J]. Information Sciences, 2009, 179(7): 883-898.

[19] 殷宏燕, 雷英杰, 雷阳. 基于海明距离的直觉模糊粗糙集相似度量方法[J]. 计算机应用与软件, 2008, 35(12):15-16,75.(H.Y. Yin, Y.L. Lei, Y. Lei. Similarity measures of intuitionistic fuzzy rough sets based on the hamming distance[J]. Computer Applications and Software, 2008,35(12) : 15-16,75 )

[20] 林梦雷,杨伟萍. 蕴涵区间直觉模糊粗糙集及其性质[J]. 山东大学学报(理学版), 2011, 46(8):104-109.(M.L. Lin, W.P. Yang. Properties of interval-valued intuitionistic fuzzy rough sets with implicators[J]. J of Shandong University(Natural Science), 2011, 46(8):104-109)

[21] 张植明, 田景峰. 基于蕴涵的区间值直觉模糊粗糙集[J]. 控制与决策, 2010,25(4): 614-618.(Z.M. Zhang, J.F. Tian. Interval-valued intuitionistic fuzzy rough sets based on implicators[J]. Control and Decision, 2010,25(4) : 614-618.)

[22] 张植明, 白云超, 田景峰. 基于覆盖的直觉模糊粗糙集[J]. 控制与决策, 2010,25(9): 1369-1373.(Z.M. Zhang, Y.C. Bai, J.F. Tian. Intuitionistic fuzzy rough sets based on intuitionistic fuzzy coverings[J]. Control and Decision, 2010,25(9) : 1369-1373.)

[23] 杨海龙. 双论域上的区间值直觉模糊粗糙集模型及其应用[J]. 模糊系统与数学, 2012,26(4):168-173.(H.L. Yang. Interval-valued Intuitionistic Fuzzy Rough Set Model on Two Universes and Its Application[J]. Fuzzy Systems and Mathematics, 2012,26(4):168-173)

[24] X.H. Zhang, B. Zhou, P. Li. A general frame for intuitionistic fuzzy rough sets[J]. Information Sciences, 2012 (216): 34–49.

[25] Z.T. Gong, X.X. Zhang. Variable precision intuitionistic fuzzy rough sets model and its application[J]. Int. J. Mach. Learn. & Cyber., 2014 (5):263–280.

[26] 路艳丽, 雷英杰, 华继学. 基于直觉模糊粗糙集的属性约简[J]. 控制与决策, 2009, 24(3): 335-341.(Y.L. Lu, Y.J. Lei, J.X. Hua. Attribute reduction based on intuitionistic fuzzy set[J]. Control and Decision, 2009,24(3): 335-341.)

[27] 陈昊,杨会成. 一种直觉模糊粗糙集属性约简新算法[J]. 小型微型计算机系统, 2011,32(3):506-510.(H. Chen, H.C. Yang. One New Algorithm for Intuitiontistic Fuzzy-rough Attribute Reduction[J]. Journal of Chinese Computer Systems, 2011,32(3):506-510.)

[28] 黄兵, 魏大宽. 基于距离的直觉模糊粗糙集模型及应用[J]. 系统工程理论与实践, 2011,3(17):1356-1363.(B. Huang, D.K. Wei. Distance-based rough set model in intuitionistic fuzzy information systems and application[J]. System engineering theory and Practice, 2011,3(17):1356-1363)

[29] 黄兵, 李华雄. 基于优势-直觉模糊粗糙模型的IT项目绩效审计评价规则获取[J]. 计算机科学, 2011,38(10):223-227. (B. Huang, H.X. Li. Evaluation rules acquisition of performance audit for IT projects in China based on dominance intuitionistic fuzzy rough set model[J]. Computer science, 2011,38(10):223-227.)

[30] H. Esmail, J. Maryam, L. Habibolla. Rough Set Theory for the Intuitionistic Fuzzy Information[J]. Systems International Journal of Modern Mathematical Sciences, 2013, 6(3): 132-143.

[31] S. Greco, B. Matarazzo, R. Slowinski. A new rough set approach to multi-criteria and multiattribute classification. Lecture Notes in Artificial Intelligence, 1998,1424: 60-67.

[32] S. Greco, B. Matarazzo, R. Slowinski. Rough approximation of a preference relation by dominance relations [J]. European Journal of Operational Research, 1999,117 (1):63-83.

[33] S. Greco, B. Matarazzo, R. Slowinski, J. Stefanowski. An algorithm for induction of decision rules consistent with dominance principle. Lecture Notes in Artificial Intelligence, 2001, 2005: 304-313.

[34] W. Ziarko. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, 46(1): 39-59.

[35] W. Ziarko. Rough Sets, Fuzzy Sets and Knowledge Discovery[M]. Singapore: Springer, 1999. 1-98.